advertisement

Follow Mint Lounge

Latest Issue

| Log In / Register

Home > Smart Living> Environment > Scientists find more clues to estimate Earth's carbon budget

Scientists find more clues to estimate Earth's carbon budget

New research on ocean bacteria could help researchers get a better sense of the total amount of CO2 in our atmosphere

A team led by researchers from the University of Minnesota has discovered that deep-sea bacteria dissolve carbon-containing rocks, releasing excess carbon into the ocean and atmosphere. Photo for representational purpose.
A team led by researchers from the University of Minnesota has discovered that deep-sea bacteria dissolve carbon-containing rocks, releasing excess carbon into the ocean and atmosphere. Photo for representational purpose. (MINT_PRINT)

A team led by researchers from the University of Minnesota has discovered that deep-sea bacteria dissolve carbon-containing rocks, releasing excess carbon into the ocean and atmosphere. These findings will allow scientists to get a better estimate of the amount of carbon dioxide in Earth's atmosphere, the primary driver of global warming.

The study was published earlier this week in The ISME Journal: Multidisciplinary Journal of Microbial Ecology, a peer-reviewed scientific journal that is part of the Nature family of publications and the official journal of the International Society for Microbial Ecology (ISME).

"If CO2 is being released into the ocean, it's also being released into the atmosphere, because they're constantly interchanging gases between them," said Dalton Leprich, the first author on the paper and a PhD student in the University of Minnesota's Department of Earth and Environmental Sciences. "While it's not as big of an impact as what humans are doing to the environment, it is a flux of CO2 into the atmosphere that we didn't know about. These numbers should help us home in on that global carbon budget."

The researchers began studying sulfur-oxidizing bacteria, a group of microbes that use sulfur as an energy source, in methane seeps on the ocean floor. Akin to deep-sea coral reefs, these "seeps" contain collections of limestone that trap large amounts of carbon. The sulfur-oxidizing microbes live on top of these rocks, an official news release explains.

Also read: Carbon emissions rebound, worrying International Energy Agency

The deep-sea bacteria inhabit carbonate rocks in methane seeps, which are collections of limestone on the ocean floor.
The deep-sea bacteria inhabit carbonate rocks in methane seeps, which are collections of limestone on the ocean floor. (Credit: Leprich, et al., Bailey Geobiology Research Group, University of Minnesota)

After noticing patterns of corrosion and holes in the limestone, the researchers found that in the process of oxidizing sulfur, the bacteria create an acidic reaction that dissolves the rocks. This then releases the carbon that was trapped inside the limestone.

"You can think of this like getting cavities on your teeth," Leprich adds. "Your tooth is a mineral. There are bacteria that live on your teeth, and your dentist will typically tell you that sugars are bad for your teeth. Microbes are taking those sugars and fermenting them, and that fermentation process is creating acid, and that will dissolve away at your teeth. It's a similar process to what's happening with these rocks."

The researchers plan to test out this effect on different types of minerals. In the future, these findings could also help scientists use dissolution features -- holes, crevices, or other evidence that rocks have been dissolved by bacteria -- to discover evidence of life on other planets, such as Mars.

"These findings are but one of the many examples of the important and understudied role that microbes play in mediating the cycling of elements on our planet," Jake Bailey, a University of Minnesota Department of Earth and Environmental Sciences associate professor and corresponding author of the study, adds in the release.

(With inputs from ANI)

Also read: New NASA report proves that humans are causing climate change

Next Story