Home > Smart Living > Innovation > New Webb study reveals rocky planets can form in harsh environments

New Webb study reveals rocky planets can form in harsh environments

Surprising results suggest that conditions for the formation of terrestrial planets can occur in a possible broader range of environments than previously thought

This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.(ESO/L. Calçada)

By Team Lounge

LAST PUBLISHED 04.12.2023  |  06:00 PM IST

An international team of researchers and astronomers has used Nasa’s James Webb Space Telescope to provide the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy.

These results, which were published recently in The Astrophysical Journal, suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought.


Also read: James Webb telescope captures new details of Milky Way galaxy

According to a news release from Nasa Goddard Space Flight Center, these are the first results from the eXtreme Ultraviolet Environments (or XUE) James Webb Space Telescope program, which focuses on the characterization of planet-forming disks (vast, spinning clouds of gas, dust, and chunks of rock where planets form and evolve) in massive star-forming regions.

“These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is important for scientists to gain insights into the diversity of the different types of exoplanets" the release explains.

The XUE program targets a total of 15 disks in three areas of the Lobster Nebula (it is also known as NGC 6357), a large emission nebula roughly 5,500 light-years away from Earth in the constellation Scorpius. 

According to the news release, the Lobster Nebula is one of the youngest and closest massive star-formation complexes, and is host to some of the most massive stars in our galaxy. “Massive stars are hotter, and therefore emit more ultraviolet (UV) radiation. This can disperse the gas, making the expected disk lifetime as short as a million years. Thanks to Webb, astronomers can now study the effect of UV radiation on the inner rocky-planet forming regions of protoplanetary disks around stars like our Sun," the release explains.

“Webb is the only telescope with the spatial resolution and sensitivity to study planet-forming disks in massive star-forming regions," team lead María Claudia Ramírez-Tannus of the Max Planck Institute for Astronomy in Germany said in the release.


view all

Astronomers will now aim to characterize the physical properties and chemical composition of the rocky-planet-forming regions of disks in the Lobster Nebula using the Medium Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This first result focuses on the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. 

This instrument has both a camera and a spectrograph that sees light in the mid-infrared region of the electromagnetic spectrum. According to Nasa, MIRI covers the wavelength range of 5 to 28 microns.

“Only the MIRI wavelength range and spectral resolution allow us to probe the molecular inventory and physical conditions of the warm gas and dust where rocky planets form," team member Arjan Bik of Stockholm University in Sweden adds in the release.

Due to its location near several massive stars in NGC 6357, scientists expect XUE 1 to have been constantly exposed to high amounts of ultraviolet radiation throughout its life. However, in this extreme environment the team still detected a range of molecules that are the building blocks for rocky planets, the release explains.

“We find that the inner disk around XUE 1 is remarkably similar to those in nearby star-forming regions," team member Rens Waters of Radboud University in the Netherlands said. “We’ve detected water and other molecules like carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene. However, the emission found was weaker than some models predicted. This might imply a small outer disk radius."

“We were surprised and excited because this is the first time that these molecules have been detected under these extreme conditions," added Lars Cuijpers of Radboud University. The team also found small, partially crystalline silicate dust at the disk’s surface. This is considered to be the building blocks of rocky planets, the release explains.

Also read: Week in tech: James Webb Space Telescope spots ‘galactic teenagers'